The inhibitory effects of 20(R)-ginsenoside Rg3 on the proliferation, angiogenesis, and collagen synthesis of hypertrophic scar derived fibroblasts in vitro
نویسندگان
چکیده
Objectives Therapeutic effect of many selectable methods applied in clinical practice for treating hypertrophic scar (HS) is not still so satisfactory. Meanwhile, a few medicines may lead to several undesirable complications. The traditional Chinese medicine, Rg3, has been reported for multiple antitumor effects previously. We have conducted series of animal experiments and confirmed the inhibitory effect of Rg3 in HS before. The aim of this study was to further verify the conclusions of previous studies and reveal the specific functional mechanisms of Rg3. Materials and Methods The HS specimens were obtained from the patients aged from 15 to 36 years without systemic diseases and the primary cultured cells were isolated from the scar tissue and expanded in vitro. In every experiment, hypertrophic scar fibroblasts (HSFs) were divided into three groups and respectively cultured in medium with or without different Rg3 concentrations (50, 100 μg/ml). Cell viability assay, flow cytometry analysis (FCM), quantitative PCR, cell migration assay, immunofluorescence staining, western blot and ELISA were employed. Results The outcomes demonstrated that Rg3 could suppress cell proliferation, vascularization and extracellular matrix (ECM) deposition of HSFs in vitro by TGF-β/SMAD and Erk signaling pathways. Significant statistical differences were between control group and Rg3-treated groups (P<0.05). Conclusion This study provides sufficient in vitro evidences for Rg3 as a promising drug in the treatment of human HS.
منابع مشابه
The inhibitory effects of 20(R)-ginsenoside Rg3 on the proliferation, angiogenesis and collagen synthesis of hypertrophic scar derived fibroblasts in vitro
Objective(s): Therapeutic effect of many selectable methods applied in clinical practice for treating hypertrophic scar (HS) is not still so satisfactory. Meanwhile, a few medicines may lead to several undesirable complications. The traditional Chinese medicine, Rg3, has been reported for multiple antitumor effects previously. We have conducted series of animal experiments and confirmed the inh...
متن کاملIn Vivo Early Intervention and the Therapeutic Effects of 20(S)-Ginsenoside Rg3 on Hypertrophic Scar Formation
BACKGROUND Intra-lesional injections of corticosteroids, interferon, and chemotherapeutic drugs are currently the most popular treatments of hypertrophic scar formation. However, these drugs can only be used after HS is formed, and not during the inflammatory phase of wound healing, which regulates the HS forming process. OBJECTIVE To investigate a new, effective, combining therapeutic and sa...
متن کاملGinsenoside Rg3 inhibits keloid fibroblast proliferation, angiogenesis and collagen synthesis in vitro via the TGF-β/Smad and ERK signaling pathways
A wide range of therapeutic options exists for the treatment of keloids, all of which have their own strengths; however, a high risk of side‑effects and frequent recurrence remains. Therefore, the present study aimed to identify improved therapeutic approaches or drugs for the treatment of keloids. Ginsenoside Rg3 (Rg3) has been reported to exert numerous antitumor effects, thus indicating that...
متن کاملElectrospun Poly(L-Lactide) Fiber with Ginsenoside Rg3 for Inhibiting Scar Hyperplasia of Skin
Hypertrophic scarring (HS) has been considered as a great concern for patients and a challenging problem for clinicians as it can be cosmetically disfiguring and functionally debilitating. In this study, Ginsenoside Rg3/Poly(l-lactide) (G-Rg3/PLLA) electrospun fibrous scaffolds covering on the full-thickness skin excisions location was designed to suppress the hypertrophic scar formation in viv...
متن کاملThe Effects of Low Level Laser Therapy on the Expression of Collagen Type I Gene and Proliferation of Human Gingival Fibroblasts (Hgf3-Pi 53): in vitro Study
Background Recent investigations show that both proliferation and secretion of macromolecules by cells can be regulated by low level laser therapy (LLLT). The aim of this study was to determine whether LLLT could induce a bio-stimulatory effects on human gingival fibroblasts (HGF3-PI 53). Therefore, the effect of laser irradiation on human gingival cell proliferation and collagen type I gene ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 21 شماره
صفحات -
تاریخ انتشار 2018